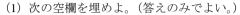
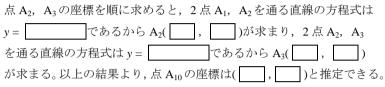
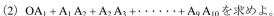
塾技 50 放物線と直線(2)

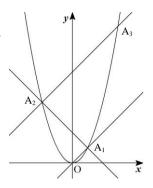
(問題)

図のように、原点 O を通る傾き 1 の直線と放物線 $y = x^2$ の交点 $A_1(1, 1)$ をとる。次に、 $点 A_1$ を通る傾き-1の直線と放物線の別の交点を A_2 とす る。さらに、点 A2を通る傾き1の直線と放物線の別の交点をA3とする。 以下同様に、傾き-1, 1, -1, · · · · · · の直線と放物線の交点を順に A_4 , A_5 , A_6 , \cdots とする。









(慶應義塾高)

(解)

(1) A_1 の x 座標は 1 とわかっているので、「塾技 50 (2)」より、 A_2 の x 座標を a_2 とし「塾技 49」の 傾きの公式を用いて立式すればよい(塾技50塾技解説参照)。

$$1 \times (1 + a_2) = -1$$

$$a_2 = -2$$
 よって, $A_2(-2, 4)$ 答

一方,直線 A_1A_2 の y 切片は,「塾技 49」の y 切片の公式より,

 $-1 \times (-2) \times 1 = 2$ よって、 A_1A_2 の方程式は、y = -x + 2 答

同様に、 A_3 のx座標を a_3 とすると、

$$1\times(-2+a_3)=1$$

$$a_3 = 3$$
 よって、 $A_3(3, 9)$ 答

 A_2A_3 の y 切片 = $-1 \times (-2) \times 3 = 6$ よって A_2A_3 の方程式は、y = x + 6 答 A_1 , A_2 , A_3 の x 座標は, それぞれ 1, -2, 3 となることより, $(A_4$ の x 座標) = -4,

(2) $OA_1 = \sqrt{1^2 + 1^2} = \sqrt{2}$, $A_1A_2 = \sqrt{1 - (-2)^2 + (4 - 1)^2} = 3\sqrt{2}$, $A_2A_3 = \sqrt{3 - (-2)^2 + (9 - 4)^2} = 5\sqrt{2}$ となるので、 $A_3A_4 = 7\sqrt{2}$ 、 $A_4A_5 = 9\sqrt{2}$ ・・・・・・と推定できる。よって、

$$OA_1 + A_1 A_2 + A_2 A_3 + \cdots + A_9 A_{10}$$

$$=\sqrt{2}+3\sqrt{2}+5\sqrt{2}+7\sqrt{2}+9\sqrt{2}+\cdots+19\sqrt{2}$$

$$= (1+3+5+7+9+\cdots+19)\sqrt{2}$$

 $=(1+3+5+7+9+\cdots +19)\sqrt{2}$ ()の中は、1番目から 10番目までの奇数列の和と $-10^2\sqrt{5}$ なるので、「塾技 99 \blacksquare (3)」より 10^2 と求まる

 $=100\sqrt{2}$ 〈答