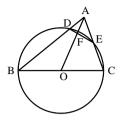
塾技 73 3 辺既知の三角形

問題)

図のように、BC = 12、AC = 8 の $\triangle ABC$ と、BC を直径とする中心 O の円が ある。2 辺 AB, AC と円 O の交点をそれぞれ D, E とし, DE と OA の交点 をFとする。CE=EDのとき、次の各問いに答えなさい。

- (1) AE の長さを求めなさい。
- (2) BD の長さを求めなさい。
- (3) DFの長さを求めなさい。
- (4) OA の長さを求めなさい。

(東京学芸大附高)



- (1) \triangle BCE $\geq \triangle$ BAE において、CE = ED より、 \angle CBE = \angle ABE …① BC は直径より、∠BEC = ∠BEA = 90° ···② BE は共通 ···③ ①,②,③より、1辺とその両端の角がそれぞれ等しいので、 \triangle BCE \equiv \triangle BAE
 - よって、 $AE = CE = \frac{1}{2}AC = 4$ (答
- (2) (1) より、 $\triangle BCE \equiv \triangle BAE$ となるので、AB = BC = 12△ABCは3辺既知の三角形なので、「塾技73」の手順に従ってBDを求めればよい。

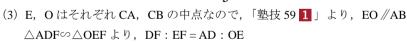
$$CD = h$$
, $BD = x$, $AD = 12-x \ge 3 \le 0$

$$h^2 = 12^2 - x^2 \quad \cdots \text{ }$$

同様に、△CAD に三平方の定理を用いて、

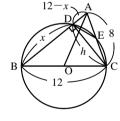
$$h^2 = 8^2 - (12 - x)^2 \quad \cdots \text{ }$$

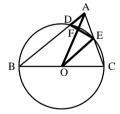
①=②より、
$$x$$
について解くと、 $x=\frac{28}{3}$ (答



$$=(12-\frac{28}{3}):6$$

一方, ED = CE = AE = 4 よって, DF =
$$\frac{4}{4+9}$$
 × ED = $\frac{4}{13}$ × 4 = $\frac{16}{13}$





(4) 線分 OA と BE の交点を G とする。「塾技 58」より、

$$\frac{BO}{CB} \times \frac{GA}{OG} \times \frac{EC}{AE} = 1$$

一方, ED = CE = AE = 4

$$\frac{6}{12} \times \frac{GA}{OG} \times \frac{4}{4} = 1 \rightarrow GA : OG = 2 : 1 \cdots ①$$

同様に、「塾技 58」より、GB:GE=2:1となるので、GE= $\frac{1}{2}$ BE

$$\triangle$$
AEG に三平方の定理を用いて、AG = $\sqrt{AE^2 + GE^2} = \frac{4\sqrt{17}}{3}$

①
$$\ \ \, \downarrow \ \ \, 0$$
 OA = $\frac{3}{2}$ AG = $2\sqrt{17}$

